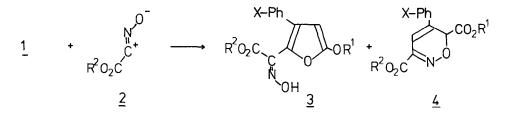

REACTIONS OF SULFOXONIUM ALLYLIDES WITH NITRILE OXIDES AND RING TRANSFORMATIONS OF THEIR REACTION PRODUCTS

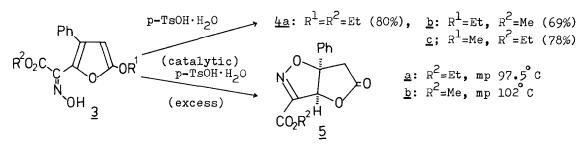
Y. Nakada, T. Hata, C. Tamura, T. Iwaoka, M. Kondo and J. Ide* Central Research Laboratories Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo 140, Japan.


Summary: Reactions of allylides $(\underline{1})$ with nitrile oxides $(\underline{2})$ afforded furanylglyoxylate oxime $(\underline{3})$ and 6H-1, 2-oxazine $(\underline{4})$. Ring transformations of 3 and 4 gave 4 and pyrrolinone (6), respectively.

The great potential of 1,3-dipolar compounds offers, via [3+2]cycloaddition, valuable entries to heterocyclic systems.¹⁾ In this communication we wish to report on reactions of stable sulfoxonium allylides (<u>1</u>) with nitrile oxides (2) and novel ring transformations of resulting reaction products.

It was previously reported that $\underline{1}$ possessed a significant necleophilicity, and that treatment of $\underline{1}$ with triethylamine led to 1,3-butadiene derivatives by [2.3] signatropic rearrangement.²⁾ On the basis of these results, reactions of $\underline{1}$ with 1,3-dipolar reagents may provide a new route to synthetic methods for heterocyclic compounds via [3+3]cycloaddition reaction.³⁾

Reactions of <u>1</u> with 2^{4} in the presence of excess triethylamine in THF at room temperature for 30 min afforded furanylglyoxylate oxime (<u>3</u>) as a main product and 6H-1,2-oxazine (<u>4</u>), resulting from [3+3]cycloaddition, as a minor one.⁵⁾



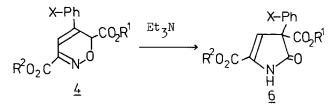
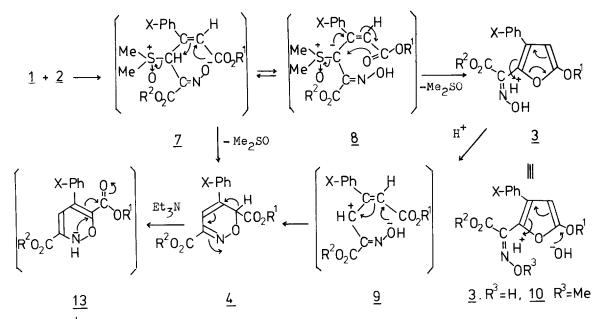
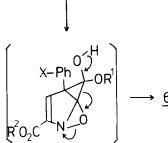
Yields of $\underline{3}$ and $\underline{4}$ are summarized in Table 1.

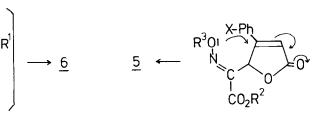
Table 1 Reaction Products from Allylide $(\underline{1})^{6}$ and Nitrile Oxide (2)

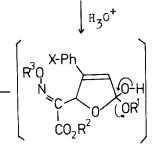
NO.	Rl	X	R ²	Product <u>3</u>	Yield(%) $\frac{4}{4}$	mp of Products (°C)		
<u>a</u>	Et	н	Et	68	9	<u>3a;</u> 146-148, <u>4a;</u> 66-67		
b	Et	н	Me	50	8	<u>3b; 110-111, 4b; 80-81</u>		
c	Me	н	Et	41	6	<u>3c; 119-121, 4c; 104.5-105.5</u>		
d	Et	p-Me	Et	35	-	<u>3d</u> ; 85-87		

When the oxime <u>3</u> was refluxed with a catalytic amount of p-toluenesulfonic acid monohydrate (p-TsOH·H₂O) in benzene for 5 min, ring transformation occurred to give the same oxazine <u>4</u> in good yield as obtained by [3+3]cycloaddition of <u>1</u>. On the other hand, treatment of <u>3</u> with excess the acid in chloroform at room temperature for 30 min furnished bicyclic lactone (5).

Another ring transformation involving 1,2-migration of the ethoxycarbonyl group was found in the reaction of the oxazine $\frac{4}{2}$ with triethylamine, i.e., $\frac{4}{2}$ was refluxed with the amine in benzene for 2 hr afforded pyrrolinone $(\underline{6})$.⁷⁾ Yields of 6 are summarized in Table 2.


Table 2 4-Pyrrolin-2-ones (6)


No.	R ¹	X	R ²	mp (°C)	Yields (%)
	Et	Н	Et	106 - 107	90
b	Et	н	Me	142 - 143.5	60
c	Me	н	Et	132 - 133.5	92
<u>d</u>	Et	p-Me	Et	99.5 - 100.5	70

The course of the reactions forming two heterocyclic compounds ($\underline{3}$ and $\underline{4}$) would be depicted as the following: the initial adduct ($\underline{7}$) from the allylide $\underline{1}$ and the nitrile oxide $\underline{2}$ is a common key intermediate. Conversion of $\underline{7}$ into oxime allylide ($\underline{8}$) by prototropy followed by cyclization from the carbonyl group of the ester moiety gives $\underline{3}$. Only a few reports were found in cyclization involving the carbonyl group of the ester moiety.⁸ The cyclization from $\underline{8}$ to $\underline{3}$ may be favored in Baldwin's intramolecular cyclization rule.⁹ On the other hand, direct cyclization of $\underline{7}$ from the oximate anion to the double bond with elimination of DMSO leads to 4.

14

 $(\underline{11} \ R^3 = H)$ $\underline{12} \ R^3 = Me$

The ring transformation of 3 to 4 using acid catalyst may proceed through allylic cation (9) as an intermediate generated by protonation of the furan ring. In the presence of excess p-TsOH·H₂O, hydration occurs at the furan ring of 3 to afford α,β -unsaturated lactone (11), which undergoes intramolecular Michael addition of the hydroxy group of the oxime group to the double bond to give the bicyclic lactone 5. Methoxime 10a (R¹=R²=Et, X=H; mp 66-67°C) obtained by methylation of 3a with diazomethane resulted only in the formation of α,β -unsaturated lactone (12a; mp 111.5-113°C) under the same conditions as for 3a, which also supports the presence of 11 as the intermediate.

Another ring transformation of $\underline{4}$ to the pyrrolinone $\underline{6}$ with a shift of the alkoxycarbonyl group may be explained by assuming cyclopropyl hemiketal (<u>14</u>) which is formed from <u>13</u> given by isomerization of <u>4</u>. Ring cleavage of <u>14</u> leads to <u>6</u>. For the migration of alkoxycarbonyl groups, cyclic hemiketals are proposed as intermediates by Grovenstein.¹⁰)

References and Notes

- 1) R. Huisgen, Angew. Chem. Internat. Edit., 2, 565 (1963).
- J. Ide and Y. Kishida, This letters, <u>1966</u>, 1787; Idem, Chem. Pharm. Bull., 16, 784 (1968); Idem. Ibid., 16, 793 (1968).
- 3) For recent cycloaddition reactions using a three carbon unit as one component. See Y. Hayakawa, K. Yokoyama and R. Noyori, J. Am. Chem. Soc., <u>100</u>, 1791 (1978) and references cited therein; Idem. Ibid., <u>100</u>, 1799 (1978); J. P. Marino and L.C. Katterman, J. Chem. Soc., Chem. Commun., <u>1979</u>, 946.
- 4) G.S. Skinner, J. Am. Chem. Soc., <u>46</u>, 731 (1924).
- 5) All new compounds described herein gave satisfactory elemental analysis, and their IR, NMR (1 H and 13 C) and mass spectra are consistent with assigned structures.
- 6) Allylides <u>lc</u> and <u>ld</u> were prepared from dimethylsulfoxonium methylide and corresponding phenylpropiolates using the method reported previously.²⁾
- 7) Structures of the furanyl oxime $\underline{3a}$, the l,2-oxazine $\underline{4c}$ and the pyrrolinone $\underline{6d}$ were fully confirmed by X-ray analysis using the direct method for solution.
- 8) T. Takeda, M. Ueda and T. Mukaiyama, Chem. Lett., 1977, 245.
- 9) J.E. Baldwin, J. Chem. Soc. Chem. Commun., 1976, 734.
- 10) E. Grovenstein, Angew. Chem. Internat. Edit., 17, 313 (1978).

(Received in Japan 28 July 1980)